Exercises for the lecture course Algebraic Topology II – Sheet 8

University of Bonn, summer term 2025

Exercise 29. Consider $k, l, n \in \mathbb{Z}^{\geq 0}$ for which there exists a fibration $S^k \to S^n \to S^l$. Prove or disprove that then l = k + 1 and n = k + l holds.

Exercise 30. Consider fibration of closed connected smooth manifolds $F \to E \to B$. Prove or disprove:

- (a) We have $\dim(E) = \dim(F) + \dim(B)$;
- (b) If E is orientable, then B and F are orientable;
- (c) If B and F are orientable, then E is orientable;
- (d) If E is the total space of a principal S^1 -bundle $S^1 \to E \to B$, then $\chi(E)$ vanishes.

Exercise 31. Let \mathcal{H}_* be a homology theory satisfying the disjoint union axiom. Consider a pullback of fibrations with CW-complexes as base space

Suppose that for any $n \in \mathbb{Z}$, any $b \in B_1$, and any loop w in B_1 at b the map $\mathcal{H}_n(p_1^{-1}(b)) \to \mathcal{H}_n(p_1^{-1}(b))$ induced by the element $\tau_1(w_1) \in [p_1^{-1}(b), p_1^{-1}(b)]$ given by the fiber transport is the identity and that $H_n(f): H_n(B_0) \to H_n(B_1)$ is bijective.

Prove or disprove that the map $\mathcal{H}_n(\overline{f}): \mathcal{H}_n(E_0) \to \mathcal{H}_n(E_1)$ is bijective for every $n \in \mathbb{Z}$.

Exercise 32. Let $F: E \to B$ be a fibration such that the fiber transport is trivial. Let R be a principal ideal domain. Suppose $H_i(F; R)$ and $H_i(B; R)$ are finitely generated for all $i \in \mathbb{Z}^{\geq 0}$ and non-trivial only for finitely many values of i.

- (a) Show that $H_i(E; R)$ is finitely generated for all $i \in \mathbb{Z}^{\geq 0}$ and non-trivial only for finitely many values of i;
- (b) Show for the Betti numbers, which are define by $b_i(X; R) := \operatorname{rk}_R(H_i(X; R))$,

$$\sum_{i\geq 0} b_i(E;R) \le \left(\sum_{j\geq 0} b_j(F;R)\right) \cdot \left(\sum_{k\geq 0} b_k(B;R)\right);$$

(c) Suppose that the inequality above is an equality and R is a field. Prove or disprove

$$H_n(E;R) = \bigoplus_{i \ge 0} H_i(F;R) \otimes_R H_{n-i}(B;R).$$

 $^{^0\}mathrm{Hand}\text{-}\mathrm{in}$ Monday 02.06.