Exercises for the lecture course Algebraic Topology II – Sheet 7

University of Bonn, summer term 2025

Exercise 25. Let A be a \mathbb{Z} -module. Let $A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots$ be a nested sequence of \mathbb{Z} -submodules of A such that $A = \bigcup_{i \in \mathbb{N}} A_i$ holds.

Prove or disprove that for every $n \in \mathbb{Z}^{\geq 0}$ we get

 $H_n(K(A,1);\mathbb{Z}) = \operatorname{colim}_{i \to \infty} H_n(K(A_i,1);\mathbb{Z}).$

Exercise 26. Let $f: X \to Y$ be a map of *CW*-complexes. Consider $d \in \mathbb{Z}^{\geq 0}$ and a homology theory \mathcal{H}_* with values in *R*-modules satisfying the disjoint union axiom such that $\mathcal{H}_i(\{\bullet\}) = \{0\}$ holds for $i \leq -1$. Suppose that $H_i(f;\mathbb{Z}): H_i(X;\mathbb{Z}) \to H_i(Y;\mathbb{Z})$ is bijective for i < d and surjective for i = d.

Prove or disprove that $\mathcal{H}_i(f) \colon \mathcal{H}_i(X) \to \mathcal{H}(Y)$ is bijective for i < d and surjective for i = d.

Exercise 27. Let X be a finite CW-complex. Let \mathcal{H}_* homology theory with values in \mathbb{Q} -modules satisfying the disjoint union axiom such that $\mathcal{H}_i(\{\bullet\}) \neq \{0\}$ holds only for finitely many $i \in \mathbb{Z}$ and $\mathcal{H}_i(\{\bullet\})$ is finitely generated for every $i \in \mathbb{Z}$.

Prove or disprove that $\mathcal{H}_n(X)$ is finitely generated for all $i \in \mathbb{Z}$ and we get for the Euler characteristic

$$\chi(X) \cdot \sum_{n \in \mathbb{Z}} (-1)^n \cdot \dim_{\mathbb{Q}}(\mathcal{H}_n(\{\bullet\})) = \sum_{n \in \mathbb{Z}} (-1)^n \cdot \dim_{\mathbb{Q}}(\mathcal{H}_n(X)).$$

Exercise 28. Let \mathcal{H}_* be any homology theory with values in \mathbb{Z} -modules satisfying the disjoint union axiom such that $\mathcal{H}_i(\{\bullet\}) = \{0\}$ holds for $i \leq -1$. Let $f: X \to Y$ be a map of connected finite *CW*-complexes. Suppose that $\mathcal{H}_i(f): \mathcal{H}_i(X) \to \mathcal{H}_i(Y)$ is bijective for all $i \in \mathbb{Z}$.

Prove or disprove that $H_i(f;\mathbb{Z}): H_i(X;\mathbb{Z}) \to H_i(Y;\mathbb{Z})$ is bijective for all $i \in \mathbb{Z}^{\geq 0}$.

⁰Hand-in Monday 26.05.