Exercises for the lecture course Algebraic Topology II – Sheet 6

University of Bonn, summer term 2025

Exercise 21. Let $\mathbb{Z} \rtimes \mathbb{Z}$ be the semidirect product with respect to the group homomorphism $\mathbb{Z} \to \operatorname{aut}(\mathbb{Z})$ sending $m \in \mathbb{Z}$ to the automorphism $(-1)^m \cdot \operatorname{id}_{\mathbb{Z}}$. (Note that $\mathbb{Z} \rtimes \mathbb{Z}$ has the presentation $\langle t, s \mid sts^{-1} = t^{-1} \rangle$.) Let K be the Klein bottle K which is the quotient of \mathbb{R}^2 by the free $\mathbb{Z} \rtimes \mathbb{Z}$ -action for which t and s act by sending (r_1, r_2) to $(r_1 + 1, r_2)$ and $(-r_1, r_2 + 1)$ respectively.

- (a) Show that K is a closed 2-dimensional manifold;
- (b) Compute $\pi_1(K)$, $H_n(K;\mathbb{Z})$, $H^n(K;\mathbb{Z})$, $H_n(K;\mathbb{F}_2)$, and $H^n(K;\mathbb{F}_2)$ for $n \ge 0$;
- (c) Compute the first Stiefel Whitney class $w_1(M) \in H^1(K; \mathbb{F}_2)$;
- (d) Decide whether K is orientable and determine its orientation covering.

Exercise 22. Prove Lemma 2.13 of the script saying that the adjunction homomorphism

ad: $\hom_{R\mathcal{D}}(M \otimes_{R\mathcal{C}} B, N) \to \hom_{R\mathcal{C}}(M, \hom_{R\mathcal{D}}(B, N))$

is bijective and natural.

Exercise 23. Let X be a CW-complex such that $H_n(X;\mathbb{Z}) \cong_{\mathbb{Z}} H_n(\{\bullet\};\mathbb{Z})$ holds for $n \in \mathbb{Z}^{\geq 0}$. Prove or disprove that for any homology theory \mathcal{H}_* with values in R-modules satisfying the disjoint union axiom the R-modules $\mathcal{H}_n(X)$ and $\mathcal{H}_n(\{\bullet\})$ are isomorphic for $n \in \mathbb{Z}$.

Exercise 24. Consider $d \in \mathbb{Z}^{\geq 0} \amalg \{\infty\}$. Compute $\mathbb{Q} \otimes_{\mathbb{Z}} K_n(\mathbb{RP}^d)$ for $n \in \mathbb{Z}$ for the complex topological K-homology K_* .

 $^{^{0}}$ Hand-in Monday 19.05.