Algebraic Topology I

The AT1 Tutors

Questions

Decide whether the following statements are true or false, answer the question, or do the required task where appropriate. Justify your answers!

- 1. If *X* is path-connected and *Y* is at least 1-connected, then $\pi_2(X \lor Y) \cong \pi_2(X) \oplus \pi_2(Y)$.
- 2. There are infinitely many homotopy classes of maps $\mathbb{R}P^3 \to S^3$.
- 3. There are infinitely many homotopy classes of maps $\mathbb{R}P^2 \to S^2$.
- 4. How many principal $\mathbb{Z}/2\mathbb{Z}$ -bundles over $\mathbb{R}P^n$ are there for each $n \ge 1$?
- 5. Let $F: \operatorname{Top}_* \to \operatorname{Set}$ be a functor that preserves finite products. Let *G* be a topological group. Prove that there exists a preferred group structure on F((G, e)).
- 6. If $A \hookrightarrow X$ is a cofibration, then $X \times \{0, 1\} \cup A \times I$ is a retract of $X \times I$.
- 7. Let $p: S^3 \to S^2$ be the Hopf fibration. Is $p^*: \pi_2(S^2) = [S^2, S^2]_* \to [S^3, S^2]_* = \pi_3(S^2)$ a group homomorphism?
- 8. Given two based path-connected CW-complexes (X, x_0) and (Y, y_0) , if two maps $f, g: (X, x_0) \rightarrow (Y, y_0)$ induce the same homomorphism $f_* = g_*: \pi_n(X, x_0) \rightarrow \pi_n(Y, y_0)$ for all $n \ge 1$, then they are homotopic. In particular, if *f* induces the trivial map on homotopy groups, then *f* is nullhomotopic.
- 9. The fundamental group is already stable. In other words, given a pathconnected space *X*, we always have that $\pi_1 X \cong \pi_1^s X$ already.
- 10. If $f: X \to Y$ is a weak homotopy equivalence, then $\Sigma f: \Sigma X \to \Sigma Y$ is a weak homotopy equivalence, too.
- 11. If $p: E \to B$ and $p': E' \to B$ are fibrations over the same path-connected base space *B* such that *E* is homotopy equivalent to *E'*, then also $F_b \simeq F'_b$

for all $b \in B$ where $F_b := p^{-1}(b)$ and $F'_b := p'^{-1}(b)$ are the respective fibres over the point *b*.

12. You have learned about classifying spaces *BG*. Go to the literature and look up the definition of group (co-)homology in terms of *BG*.