Exercises for the lecture course Algebraic Topology I – Sheet 9

University of Bonn, winter term 24/25

Aufgabe 33. Compute for $n \ge 2$ and $k \ge 1$:

- (a) $\pi_1(S^{n-1} \times SO(n) \times \mathbb{RP}^n \times \mathbb{CP}^n);$
- (b) $\pi_k(T^n \times \mathbb{RP}^\infty \times \mathbb{CP}^\infty);$
- (c) $\pi_2(S^n \vee \mathbb{CP}^n)$.

Aufgabe 34. Prove or disprove that the obvious map $\pi_3(D^2, S^1) \to \pi_3(D^2/S^1)$ is surjective.

Aufgabe 35. Consider $m, n \in \mathbb{Z}^{\geq -1}$. Let X and Y be spaces such that X is m connected and Y is n-connected, where (-1)-connected means that there is no condition. The join X * Y of X and Y is defined by the pushout

$$\begin{array}{ccc} X \times Y \longrightarrow X \times \operatorname{cone}(Y) \\ & \downarrow & \downarrow \\ \operatorname{cone}(X) \times Y \longrightarrow X \ast Y. \end{array}$$

Prove that the join X * Y is (m + n + 2)-connected.

Aufgabe 36. Prove or disprove:

- (a) For every simply connected topological group G we have $\pi_1(\Omega BG) = \{1\};$
- (b) If G is a topological group, then $\pi_1(G)$ is abelian;
- (c) If G is a compact connected Lie group and the universal principal G-bundle $p: EG \to BG$ has a section $s: BG \to EG$, then G is the trivial group.

⁰Hand-in Monday 09.12.