Exercises for the lecture course Algebraic Topology I – Sheet 2

University of Bonn, winter term 24/25

Aufgabe 5. Let W be the Warsaw circle, i.e., the union of subsets of \mathbb{R}^2 given by the union of $\{(x, \sin(2\pi/x)) \mid x \in (0, 1]\}, \{(1, y) \mid y \in [-2, 0]\}, \{(x, -2) \mid x \in [0, 1]\}$ and $\{(0, y) \mid y \in [-2, 1]\}.$

Show that the projection $p: W \to \{\bullet\}$ is a weak homotopy equivalence but not a homotopy equivalence.

Aufgabe 6. Let $X \subseteq \mathbb{R}^{n+1}$ be the union $\bigcup_{k=0}^{\infty} Y_k$, where Y_k is the sphere around $(1/k, 0, 0, \ldots, 0)$ of radius 1/k.

Prove or disprove that there is a surjective homomorphism $\pi_n(X, x) \to \prod_{i=0}^{\infty} \mathbb{Z}$ and hence $\pi_n(X, x)$ is uncountable for any base point $x \in X$.

Aufgabe 7. Compute the set of homotopy classes [X, Y] of maps $X \to Y$ for the following cases:

- (a) $X = Y = S^n$ for $1 \le n$;
- (b) $X = S^m$ and $Y = S^n$ for $0 \le m < n$;
- (c) $X = S^n$ and $Y = T^n$ for $n \ge 2$;
- (d) $X = \mathbb{CP}^n$ and $Y = S^{2n}$ for $n \ge 1$;
- (e) $X = \mathbb{CP}^n$ and $Y = S^1$ for $n \ge 1$.

Aufgabe 8. Let (X, A) be a topological pair such that A is (n - 1)-connected and X is *n*-connected for $n \in \{1, 2, ...\}$ II $\{\infty\}$. Prove or disprove that (X, A) is *n*-connected.

⁰Hand-in Monday 21.10.