Exercises for the lecture course Algebraic Topology I – Sheet 11

University of Bonn, winter term 24/25

Aufgabe 41. Let M be a simply connected closed 4-manifold with Euler characteristic $\chi(M) = 2$. Prove or disprove that M is homotopy equivalent to S^4 .

Aufgabe 42. Let M be a connected closed orientable 3-manifold such that its fundamental group π is non-trivial and satisfies $\pi = [\pi, \pi]$. (Such a manifold does exist.)

- (a) Construct a map $f: M \to S^3$ which is not a homotopy equivalence but induces an isomorphism on all homology groups;
- (b) Show that $\Sigma f \colon \Sigma M \to \Sigma S^3$ is a homotopy equivalence.

Aufgabe 43. Consider a map $f: X \to Y$ of path connected CW-complexes. Decide which of the following assertions are true. (You are allowed to use the previous exercise.)

- (a) Suppose that X and Y are simply connected. Then the map f is a homotopy equivalence if and only if its mapping cone is contractible;
- (b) Suppose that X and Y are simply connected. Then the map f is a homotopy equivalence if and only if its mapping cone is acyclic, i.e., its homology groups vanish in degree $n \ge 1$;
- (c) The map f is a homotopy equivalence if and only if its mapping cone is contractible.

Aufgabe 44. Let X be a path connected CW-complex. Recall that it is aspherical if $\pi_n(X, x)$ vanishes for $n \ge 2$ and any base point x. Show that the following assertions are equivalent:

- X is aspherical;
- \widetilde{X} is contractible;
- $H_i(\widetilde{X})$ is trivial for every $i \ge 2$.

 $^{^0\}mathrm{Hand}\text{-}\mathrm{in}$ Monday 06.01.