Exercises for the lecture course Algebraic Topology I – Sheet 10

University of Bonn, winter term 24/25

Aufgabe 37. Let ξ be an *n*-dimensional vector bundle over the space *B*. For $l \in \mathbb{Z}^{\geq 0}$ an *l*-framing of ξ is a bundle isomorphism $(\mathrm{id}_B, \overline{u}) \colon \underline{\mathbb{R}^{n+l}} \xrightarrow{\cong} \xi \oplus \underline{\mathbb{R}^l}$ over *B*. We call an l_0 -framing $(\mathrm{id}_B, \overline{u}_0) \colon \underline{\mathbb{R}^{n+l_0}} \xrightarrow{\cong} \xi \oplus \underline{\mathbb{R}^{l_0}}$ and an l_1 -framing $(\mathrm{id}_B, \overline{u}_1) \colon \underline{\mathbb{R}^{n+l_1}} \xrightarrow{\cong} \xi \oplus \underline{\mathbb{R}^{l_1}}$ equivalent if there exists $l \in \mathbb{Z}^{\geq 0}$ with $l \geq l_0, l_1$ such that for i = 0, 1 the two bundle isomorphisms over *B*

$$\underline{\mathbb{R}^{n+l}} = \underline{\mathbb{R}^{n+l_i}} \oplus \underline{\mathbb{R}^{l-l_i}} \xrightarrow{(\mathrm{id}_B, \overline{u}_i) \oplus \mathrm{id}_{\underline{\mathbb{R}^{l-l_i}}}} \xi \oplus \underline{\mathbb{R}^{l_i}} \oplus \underline{\mathbb{R}^{l-l_i}} = \xi \oplus \underline{\mathbb{R}^{l_i}}$$

are homotopic through bundle isomorphisms over B. A stable framing on ξ is an equivalences class of *l*-framings.

- (a) Prove that, for a compact space B, the group [B, O] acts transitively and freely on the set of stable framing of ξ if there exists a stable framings on ξ ; (the old version asked that stable framings are classified by the group [B, SO], which is incorrect. This group only classifies oriented framings.)
- (b) Show that the tangent bundle TS^2 has precisely one two stable framing;
- (c) Show that the tangent bundle TS^1 has precisely two four stable framings;
- (d) Construct explicit representatives for these stable framings on TS^2 and TS^1 .

Aufgabe 38. Prove that $\pi_0^s \cong \mathbb{Z}$ and that there is a surjection $\mathbb{Z} \to \pi_1^s$.

Aufgabe 39. Construct a natural isomorphism

$$\pi_n^s(X) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} H_n(X; \mathbb{Q})$$

for any space X using the fact that π_n^s is finite for every $n \in \mathbb{Z}^{\geq 1}$.

Aufgabe 40. Consider $n \ge 2$ and $X = S^1 \lor S^n$. Show that the $\mathbb{Z}[\pi_1(X)]$ -module $\pi_n(X)$ is free of rank 1.

 $^{^{0}}$ Hand-in Monday 16.12.