Exercises for the lecture course Algebraic Topology I – Sheet 1

University of Bonn, winter term 24/25

Aufgabe 1. Let M be a connected closed 3-manifold whose fundamental group G is perfect, i.e., G agrees with its commutator subgroup [G, G], and non-trivial.

Prove or disprove that there is a map $f: M \to S^3$ which is not a homotopy equivalence and induces an isomorphism $H_n(f; A): H_n(M; A) \to H_n(S^3; A)$ for any abelian group Aand any $n \ge 0$.

Aufgabe 2. Let $f: X \to Y$ be a homotopy equivalence. Show that for any $x \in X$ and $n \ge 1$ the induced map $\pi_n(f, x): \pi_n(X, x) \to \pi_n(Y, f(x))$ is an isomorphism.

Aufgabe 3. Compute $\pi_n(T^k \times \mathbb{R}^l, x)$ for all $k, l, n \ge 1$, where T^k is the k-torus.

Aufgabe 4. Consider a path connected space X with base point $x \in X$ and $n \ge 1$.

(a) Let $[S_n] \in H_n(S^n)$ be a generator. Show that we get a well-defined group homomorphism

hur_n: $\pi_n(X, x) \to H_n(X)$

by sending [f] represented by the pointed map $f: (S^n, s) \to (X, x)$ to the image of the fundamental class $[S^n]$ under the map $H_n(f): H_n(S^n) \to H_n(X)$.

(b) Give for every $n \ge 2$ examples of closed connected orientable manifolds M, N of dimension n such that $\operatorname{hur}_n \colon \pi_n(M, x) \to H_n(M)$ is surjective and $\operatorname{hur}_n \colon \pi_n(N, x) \to H_n(N)$ is trivial.

⁰Hand-in Monday 14.10.